Sains Malaysiana 54(4)(2025): 1089-1099

http://doi.org/10.17576/jsm-2025-5404-10

 

Enhanced Functional Characteristics as a Cholesterol-lowering Bioactive Peptide from

Kara Kratok Sprouts (Phaseolus lunatus L.)

(Ciri Fungsian yang Dipertingkatkan sebagai Peptida Bioaktif Penurun Kolesterol daripada

Pucuk Kara Kratok (Phaseolus lunatus L.))

 

CAHYO BUDIYANTO, ANDRIATI NINGRUM, AGNES MURDIATI & RETNO INDRATI*

 

Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia

 

Diserahkan: 8 Julai 2024/ Diterima: 17 Disember 2024

 

Abstract

HMG-CoA reductase is an enzyme that converts HMG-CoA into cholesterol via the mevalonate pathway, contributing to cardiovascular disease. The germination of brown kara kratok (Phaseolus lunatus) mixtures, including dark brown, light brown, or brown color pattern, specifically for 0, 24, 48, 72, and 96 h, yielded interesting results. The samples were measured for radicle length, % inhibition of HMG-CoA reductase, type of inhibition, IC50 value, total protein content, amino acids, percentage degree of hydrolysis (%DH), and molecular weight (MW), providing valuable insights into the potential use of these biopeptides. The results showed that biopeptides from germinated kara kratok exhibited the ability as HMG-CoA reductase inhibitors. Furthermore, the germination process increased its capability, from 46.79% in beans to 83.77% in 72-h germination. The 72-h germination was observed to be the best HMG-CoA reductase inhibitor as a competitive inhibitor, with an IC50 value of 335.09 μg/mL. This was supported by a total protein content of 27.76%, with glutamic acid (2.99%) as the dominant amino acid, followed by phenylalanine, aspartic acid, leucine, serine, and arginine, %DH (26.26%), and MW (5-15 kDa). Brown kara kratok sprouts possess the potential to inhibit HMG-CoA reductase, and germination increases its capability.

Keywords: Biopeptide; germination; HMG CoA reductase; inhibition; Phaseolus lunatus

 

Abstract

HMG-CoA reduktase ialah enzim yang menukarkan HMG-CoA kepada kolesterol melalui laluan mevalonat, menyumbang kepada penyakit kardiovaskular. Percambahan campuran kara kratok coklat (Phaseolus lunatus), termasuk corak warna coklat gelap, coklat muda atau coklat, khusus untuk 0, 24, 48, 72 dan 96 jam memberikan hasil yang menarik. Sampel diukur untuk panjang radikel, % perencatan HMG-CoA reduktase, jenis perencatan, nilai IC50, jumlah kandungan protein, asid amino, peratusan darjah hidrolisis (%DH) dan berat molekul (MW), memberikan pandangan berharga tentang potensi penggunaan biopeptida ini. Keputusan menunjukkan bahawa biopeptida daripada kara kratok yang bercambah menunjukkan keupayaan sebagai perencat reduktase HMG-CoA. Tambahan pula, proses percambahan meningkatkan keupayaannya daripada 46.79% dalam kacang kepada 83.77% dalam percambahan 72 jam. Percambahan 72 jam diperhatikan sebagai perencat reduktase HMG-CoA terbaik sebagai perencat kompetitif dengan nilai IC50 335.09 μg/mL. Ini disokong oleh jumlah kandungan protein sebanyak 27.76% dengan asid glutamat (2.99%) sebagai asid amino dominan, diikuti oleh fenilalanin, asid aspartik, leucine, serin dan arginin, %DH (26.26%) dan MW (5-15 kDa). Pucuk kara kratok coklat mempunyai potensi untuk menghalang HMG-CoA reduktase dan percambahan meningkatkan keupayaannya.

Kata kunci: Biopeptida; HMG CoA reduktase; percambahan; perencatan; Phaseolus lunatus

RUJUKAN

Adewole, T.S., Dudu, B.B., Oladele, J.O., Oyeleke, O.M. & Kuku, A. 2023. Functional bioactivities of soluble seed proteins from two leguminous seeds. Preventive Nutrition and Food Science 28(2): 160-169. https://doi.org/10.3746/pnf.2023.28.2.160

Agustia, F.C., Murdiati, A. & Indrati, R. 2023. Production of dipeptidyl peptidase-iv inhibitory peptides from germinated jack bean [Canavalia ensiformis (L.) DC.] flour. Preventive Nutrition and Food Science 28: 149-159. https://doi.org/10.3746/pnf.2023.28.2.149

Agustia, F.C., Supriyadi, S., Murdiati, A. & Indrati, R. 2023. Germination of jack bean [Canavalia ensiformis (L.) DC.] and its impact on nutrient and anti-nutrient composition. Food Research 7(5): 210-218. https://doi.org/10.26656/fr.2017.7(5).905

AOAC. 2005. Official method of analysis. 18th ed. AOAC Press, Maryland, USA 1 (Volume 1): 73-80.

Attaallah, R. & Amine, A. 2021. The kinetic and analytical aspects of enzyme competitive inhibition: Sensing of tyrosinase inhibitors. Biosensors 11(9): 322. https://doi.org/10.3390/BIOS11090322

Aykul, S. & Martinez-Hackert, E. 2016. Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis. Analytical Biochemistry 508(1): 97-103. https://doi.org/doi:10.1016/j.ab.2016.06.025

Bautista-Expósito, S., Peñas, E., Vanderberg, A., Frias, J. & Martínez-Villaluenga, C. 2020. Effect of time and legume type on germination-induced proteolysis of lentils and faba beans. MDPI 70(1): 4. https://doi.org/10.3390/foods_2020-07823

Boachie, R., Yao, S. & Udenigwe, C.C. 2018. Molecular mechanisms of cholesterol-lowering peptides derived from food proteins. Current Opinion in Food Science 20: 58-63. https://doi.org/10.1016/j.cofs.2018.03.006

Bonita, L.C., Shantibala Devi, G.A. & Singh, B.C.H. 2020. Lima bean (Phaseolus lunatus L.) - A health perspective. International Journal Science Technology Research 9(02): 5638-5649.

Bueno, D.B., da Silva Júnior, S.I., Chiarotto, A.B.S., Cardoso, T.M., Neto, J.A., dos Reis, G.C.L., Glória, M.B.A. & Tavano, O.L. 2020. The germination of soybeans increases the water-soluble components and could generate innovations in soy-based foods. LWT - Food Science and Technology 117: 108599. https://doi.org/10.1016/j.lwt.2019.108599

Chang, K.C., Skauge, L.H. & Satterlee, L.D. 1989. Analysis of amino acids in soy isolates and navy beans using precolumn derivatization with phenylisothiocyanate and reversed‐phase high performance liquid chromatography. Journal of Food Science 54(3): 756-757. https://doi.org/10.1111/j.1365-2621.1989.tb04699.x

Dattatray, T.R., Monica, O., Babu, A.S. & Jaganmohan, R. 2019. Effect of soaking time on sprouting and rheological properties of green gram. International Journal of Pure & Applied Bioscience 7(3): 181-188. https://doi.org/10.18782/2320-7051.7472

Endo, A., Kuroda, M. & Tanzawa, K. 1976. Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Letters 72(2): 323-326. https://doi.org/10.1016/j.atherosclerosissup.2004.08.021

Fitriani, A., Indrati, R., Marsono, Y. & Supriyadi, S. 2022. Angiotensin-I-converting enzyme inhibitory (ACE-I) peptide from germinated Lamtoro Gung (Leucaena laucocephala ssp. Glabrata (Rose) S. Zarate) flour. Sains Malaysiana 51(11): 3703-3714. https://doi.org/10.17576/jsm-2022-5111-15

Gholamhoseinian, A., Shahouzehi, B. & Sharifi-Far, F. 2010. Inhibitory activity of some plant methanol extracts on 3-hydroxy-3-methylglutaryl coenzyme a reductase. International Journal of Pharmacology 6(5): 705-711. https://doi.org/10.3923/ijp.2010.18.24

Hermanto, S., Octavio, A., Azrifitria, A. & Kusumaningrum, S. 2021. The HMG-CoA reductase inhibitor activities of soy protein hydrolysates from papain hydrolysis Molekul 16(2): 145-155. https://doi.org/10.20884/1.jm.2021.16.2.724

Istvan, E. 2003. Statin inhibition of HMG-CoA reductase : A 3-dimensional view.  Atherosclerosis  Supplements 4(1): 3-8. https://doi.org/10.1016/S1567-5688(03)00003-5

Köhler, D. & Lang, A. 1963. Evidence for substances in higher plants interfering with response of dwarf peas to gibberellin. Plant Physiology 38(5): 555-560. https://doi.org/10.1104/pp.38.5.555

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680-685. https://doi.org/10.1038/227680a0

Lammi, C., Zanoni, C. & Arnoldi, A. 2015. Three peptides from soy glycinin modulate glucose metabolism in human hepatic HepG2 cells. International Journal of Molecular Sciences 16(11): 27362-27370. https://doi.org/10.3390/ijms161126029

Lammi, C., Zanoni, C., Scigliuolo, G.M., D’Amato, A. & Arnoldi, A. 2014. Lupin peptides lower low-density lipoprotein (LDL) cholesterol through an up-regulation of the LDL receptor/sterol regulatory element binding protein 2 (SREBP2) pathway at HepG2 cell line. Journal of Agricultural and Food Chemistry 62(29): 7151-7159. https://doi.org/10.1021/jf500795b

Luis, C.G., Mario, D.M., Alma, M.A., Gloria, D.O. & David, B.A. 2012. Lima bean (Phaseolus lunatus) protein hydrolysates with ACE-I inhibitory activity. Food and Nutrition Sciences 3(4): 511-521. https://doi.org/10.4236/fns.2012.34072

Moreno, C., Mojica, L., Gonz, E., Mej, D., Mar, R. & Ruiz, C. 2020. Combinations of legume protein hydrolysates synergistically inhibit biological markers associated with adipogenesis. Foods 9(11): 1678. https://doi.org/10.3390/foods9111678

Murphy, C., Deplazes, E., Cranfield, C.G. & Garcia, A. 2020. The role of structure and biophysical properties in the pleiotropic effects of statins. International Journal of Molecular Sciences 21(22): 8745. https://doi.org/10.3390/ijms21228745

Pak, V.V., Kim, S.H., Koo, M., Lee, N., Shakhidoyatov, K.M. & Kwon, D.Y. 2007. Peptide design of a competitive inhibitor for HMG-CoA reductase based on statin structure. Biopolymers 85(4): 392-406. https://doi.org/10.1002/bip.20580

Palupi, H.T., Estiasih, T. & Sutrisno, A. 2021. Characterization of nutritional and functional properties of lima bean flour (Phaseolus lunatus L.). IOP Conference Series: Earth and Environmental Science 924(1): 012033. https://doi.org/10.1088/1755-1315/924/1/012033

Rebollo-Hernanz, M., Bringe, N.A. & Gonzalez de Mejia, E. 2022. Selected soybean varieties regulate hepatic LDL-cholesterol homeostasis depending on their glycinin: β-conglycinin ratio. Antioxidants 12(1): 20. https://doi.org/10.3390/antiox12010020

Recek, N., Holc, M., Vesel, A., Zaplotnik, R., Gselman, P., Mozetič, M. & Primc, G. 2021. Germination of Phaseolus vulgaris L. seeds after a short treatment with a powerful RF plasma. International Journal of Molecular Sciences 22(13): 6672. https://doi.org/10.3390/ijms22136672

Rumiyati, R., James, A.P. & Jayasena, V. 2012. Effect of germination on the nutritional and protein profile of Australian sweet lupin (Lupinus angustifolius L.). Food and Nutrition Sciences 3(5): 621-626. https://doi.org/10.4236/fns.2012.35085

Sandoval-Sicairos, E.S., Domínguez-Rodríguez, M., Montoya-Rodríguez, A., Milán-Noris, A.K., Reyes-Moreno, C. & Milán-Carrillo, J. 2020. Phytochemical compounds and antioxidant activity modified by germination and hydrolysis in Mexican amaranth. Plant Foods for Human Nutrition 75(2): 192-199. https://doi.org/10.1007/s11130-020-00798-z

Seidu, K.T., Osundahunsi, O.F. & Osamudiamen, P.M. 2018. Nutrients assessment of some lima bean varieties grown in southwest Nigeria.  International Food Research Journal 25(2): 848-853.

Soares, R.A.M., Mendonça, S., De Castro, L.Í.A., Menezes, A.C.C.C.C. & Arêas, J.A.G. 2015. Major peptides from amaranth (Amaranthus cruentus) protein inhibit HMG-CoA reductase activity. International Journal of Molecular Sciences 16(2): 4150-4160. https://doi.org/10.3390/ijms16024150

Taylor, J.R., Novellie, L. & Liebenberg, N.V. 1985. Protein body degradation in the starchy endosperm of germinating sorghum. Journal of Experimental Botany 36(8): 1287-1295. https://doi.org/10.1093/jxb/36.8.1287

Villalobos, M.C., Nicolas, M.G. & Trinidad, T.P. 2023. Cholesterol-lowering effect of protein hydrolysates from lemongrass (Cymbopogon citratus Stapf.). Current Research in Nutrition and Food Science 11(3): 1177-1186. https://doi.org/10.12944/CRNFSJ.11.3.22

Wang, H. & Patterson, C. 2015. Atherosclerosis: Risks, Mechanisms, and Therapies. New York:  John Wiley & Sons.

Wang, J., Li, Y., Lo, S.W., Hillmer, S., Sun, S.S., Robinson, D.G. & Jiang, L. 2007. Protein mobilization in germinating mung bean seeds involves vacuolar sorting receptors and multivesicular bodies. Plant Physiology 143(4): 1628-1639. https://doi.org/10.1104/pp.107.096263

Zioudrou, C., Streaty, R.A. & Klee, W.A. 1979. Opioid peptides derived from food proteins. The Exorphins. Journal of Biological Chemistry 254(7): 2446-2449. https://doi.org/10.1016/s0021-9258(17)30243-0

 

*Pengarang untuk surat-menyurat; email: indrati@ugm.ac.id

 

 

 

 

 

 

 

           

sebelumnya