Sains
Malaysiana 54(4)(2025): 1089-1099
http://doi.org/10.17576/jsm-2025-5404-10
Enhanced Functional Characteristics
as a Cholesterol-lowering Bioactive Peptide from
Kara Kratok Sprouts (Phaseolus lunatus L.)
(Ciri Fungsian yang Dipertingkatkan
sebagai Peptida Bioaktif Penurun Kolesterol daripada
Pucuk Kara Kratok (Phaseolus
lunatus L.))
CAHYO BUDIYANTO, ANDRIATI NINGRUM, AGNES
MURDIATI & RETNO INDRATI*
Department of Food and Agricultural
Product Technology, Faculty of Agricultural Technology, Universitas Gadjah
Mada, Yogyakarta, Indonesia
Diserahkan: 8 Julai 2024/ Diterima: 17 Disember 2024
Abstract
HMG-CoA
reductase is an enzyme that converts HMG-CoA into cholesterol via the
mevalonate pathway, contributing to cardiovascular disease. The germination of
brown kara kratok (Phaseolus lunatus) mixtures, including dark
brown, light brown, or brown color pattern, specifically for 0, 24, 48, 72, and
96 h, yielded interesting results. The samples were measured for radicle
length, % inhibition of HMG-CoA reductase, type of inhibition, IC50 value, total protein content, amino acids, percentage degree of hydrolysis
(%DH), and molecular weight (MW), providing valuable insights into the
potential use of these biopeptides. The results showed that biopeptides from germinated kara kratok exhibited the ability as HMG-CoA reductase inhibitors.
Furthermore, the germination process increased its capability, from 46.79% in
beans to 83.77% in 72-h germination. The 72-h germination was observed to be
the best HMG-CoA reductase inhibitor as a competitive inhibitor, with an IC50 value of 335.09 μg/mL. This was supported by a total protein content of
27.76%, with glutamic acid (2.99%) as the dominant amino acid, followed by
phenylalanine, aspartic acid, leucine, serine, and arginine, %DH (26.26%), and
MW (5-15 kDa). Brown kara kratok sprouts possess the potential to inhibit HMG-CoA reductase, and germination
increases its capability.
Keywords:
Biopeptide; germination; HMG CoA reductase; inhibition; Phaseolus lunatus
Abstract
HMG-CoA reduktase ialah enzim yang menukarkan
HMG-CoA kepada kolesterol melalui laluan mevalonat, menyumbang kepada penyakit
kardiovaskular. Percambahan campuran kara kratok coklat (Phaseolus lunatus),
termasuk corak warna coklat gelap, coklat muda atau coklat, khusus untuk 0, 24,
48, 72 dan 96 jam memberikan hasil yang menarik. Sampel diukur untuk panjang
radikel, % perencatan HMG-CoA reduktase, jenis perencatan, nilai IC50,
jumlah kandungan protein, asid amino, peratusan darjah hidrolisis (%DH) dan
berat molekul (MW), memberikan pandangan berharga tentang potensi penggunaan
biopeptida ini. Keputusan menunjukkan bahawa biopeptida daripada kara kratok
yang bercambah menunjukkan keupayaan sebagai perencat reduktase HMG-CoA.
Tambahan pula, proses percambahan meningkatkan keupayaannya daripada 46.79%
dalam kacang kepada 83.77% dalam percambahan 72 jam. Percambahan 72 jam
diperhatikan sebagai perencat reduktase HMG-CoA terbaik sebagai perencat
kompetitif dengan nilai IC50 335.09 μg/mL. Ini disokong oleh
jumlah kandungan protein sebanyak 27.76% dengan asid glutamat (2.99%) sebagai
asid amino dominan, diikuti oleh fenilalanin, asid aspartik, leucine, serin dan
arginin, %DH (26.26%) dan MW (5-15 kDa). Pucuk kara kratok coklat mempunyai
potensi untuk menghalang HMG-CoA reduktase dan percambahan meningkatkan
keupayaannya.
Kata kunci: Biopeptida; HMG CoA reduktase;
percambahan; perencatan; Phaseolus lunatus
RUJUKAN
Adewole, T.S., Dudu, B.B., Oladele, J.O., Oyeleke,
O.M. & Kuku, A. 2023. Functional bioactivities of soluble seed proteins
from two leguminous seeds. Preventive Nutrition and Food Science 28(2):
160-169. https://doi.org/10.3746/pnf.2023.28.2.160
Agustia, F.C., Murdiati, A. & Indrati, R. 2023. Production
of dipeptidyl peptidase-iv inhibitory peptides from germinated jack bean [Canavalia
ensiformis (L.) DC.] flour. Preventive Nutrition and Food Science 28:
149-159. https://doi.org/10.3746/pnf.2023.28.2.149
Agustia, F.C., Supriyadi, S., Murdiati, A. & Indrati, R.
2023. Germination of jack bean [Canavalia ensiformis (L.) DC.] and its
impact on nutrient and anti-nutrient composition. Food Research 7(5): 210-218. https://doi.org/10.26656/fr.2017.7(5).905
AOAC. 2005. Official method of analysis. 18th ed. AOAC Press,
Maryland, USA 1 (Volume 1): 73-80.
Attaallah, R. & Amine, A. 2021. The kinetic and
analytical aspects of enzyme competitive inhibition: Sensing of tyrosinase
inhibitors. Biosensors 11(9): 322. https://doi.org/10.3390/BIOS11090322
Aykul, S. & Martinez-Hackert, E. 2016. Determination of
half-maximal inhibitory concentration using biosensor-based protein interaction
analysis. Analytical Biochemistry 508(1): 97-103. https://doi.org/doi:10.1016/j.ab.2016.06.025
Bautista-Expósito, S., Peñas, E., Vanderberg, A., Frias, J.
& Martínez-Villaluenga, C. 2020. Effect of time and legume type on
germination-induced proteolysis of lentils and faba beans. MDPI 70(1):
4. https://doi.org/10.3390/foods_2020-07823
Boachie, R., Yao, S. & Udenigwe, C.C. 2018. Molecular mechanisms
of cholesterol-lowering peptides derived from food proteins. Current Opinion
in Food Science 20: 58-63. https://doi.org/10.1016/j.cofs.2018.03.006
Bonita, L.C., Shantibala Devi, G.A. & Singh, B.C.H. 2020.
Lima bean (Phaseolus lunatus L.) - A health perspective. International
Journal Science Technology Research 9(02): 5638-5649.
Bueno, D.B., da Silva Júnior, S.I., Chiarotto, A.B.S.,
Cardoso, T.M., Neto, J.A., dos Reis, G.C.L., Glória, M.B.A. & Tavano, O.L.
2020. The germination of soybeans increases the water-soluble components and could
generate innovations in soy-based foods. LWT - Food Science and Technology 117: 108599. https://doi.org/10.1016/j.lwt.2019.108599
Chang, K.C., Skauge, L.H. & Satterlee, L.D. 1989.
Analysis of amino acids in soy isolates and navy beans using precolumn derivatization
with phenylisothiocyanate and reversed‐phase high performance liquid chromatography. Journal of Food Science 54(3): 756-757. https://doi.org/10.1111/j.1365-2621.1989.tb04699.x
Dattatray, T.R., Monica, O., Babu, A.S. & Jaganmohan, R.
2019. Effect of soaking time on sprouting and rheological properties of green
gram. International Journal of Pure & Applied Bioscience 7(3): 181-188. https://doi.org/10.18782/2320-7051.7472
Endo, A., Kuroda, M. & Tanzawa, K. 1976. Competitive
inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and
ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Letters 72(2): 323-326. https://doi.org/10.1016/j.atherosclerosissup.2004.08.021
Fitriani, A., Indrati, R., Marsono, Y. & Supriyadi, S.
2022. Angiotensin-I-converting enzyme inhibitory (ACE-I) peptide from
germinated Lamtoro Gung (Leucaena laucocephala ssp. Glabrata (Rose) S.
Zarate) flour. Sains Malaysiana 51(11): 3703-3714. https://doi.org/10.17576/jsm-2022-5111-15
Gholamhoseinian, A., Shahouzehi, B. & Sharifi-Far, F.
2010. Inhibitory activity of some plant methanol extracts on
3-hydroxy-3-methylglutaryl coenzyme a reductase. International Journal of
Pharmacology 6(5): 705-711. https://doi.org/10.3923/ijp.2010.18.24
Hermanto, S., Octavio, A., Azrifitria, A. &
Kusumaningrum, S. 2021. The HMG-CoA reductase inhibitor activities of soy
protein hydrolysates from papain hydrolysis Molekul 16(2): 145-155. https://doi.org/10.20884/1.jm.2021.16.2.724
Istvan, E. 2003. Statin inhibition of HMG-CoA reductase :
A 3-dimensional view. Atherosclerosis Supplements 4(1): 3-8. https://doi.org/10.1016/S1567-5688(03)00003-5
Köhler, D. & Lang, A. 1963. Evidence for substances in higher
plants interfering with response of dwarf peas to gibberellin. Plant Physiology 38(5): 555-560. https://doi.org/10.1104/pp.38.5.555
Laemmli, U.K. 1970. Cleavage of structural proteins during
the assembly of the head of bacteriophage T4. Nature 227(5259):680-685. https://doi.org/10.1038/227680a0
Lammi, C., Zanoni, C. & Arnoldi, A. 2015. Three peptides
from soy glycinin modulate glucose metabolism in human hepatic HepG2 cells. International
Journal of Molecular Sciences 16(11): 27362-27370. https://doi.org/10.3390/ijms161126029
Lammi, C., Zanoni, C., Scigliuolo, G.M., D’Amato, A. &
Arnoldi, A. 2014. Lupin peptides lower low-density lipoprotein (LDL) cholesterol
through an up-regulation of the LDL receptor/sterol regulatory element binding
protein 2 (SREBP2) pathway at HepG2 cell line. Journal of Agricultural and Food
Chemistry 62(29): 7151-7159. https://doi.org/10.1021/jf500795b
Luis, C.G., Mario, D.M., Alma, M.A., Gloria, D.O. &
David, B.A. 2012. Lima bean (Phaseolus lunatus) protein hydrolysates
with ACE-I inhibitory activity. Food and Nutrition Sciences 3(4): 511-521. https://doi.org/10.4236/fns.2012.34072
Moreno, C., Mojica, L., Gonz, E., Mej, D., Mar, R. &
Ruiz, C. 2020. Combinations of legume protein hydrolysates synergistically
inhibit biological markers associated with adipogenesis. Foods 9(11):
1678. https://doi.org/10.3390/foods9111678
Murphy, C., Deplazes, E., Cranfield, C.G. & Garcia, A.
2020. The role of structure and biophysical properties in the pleiotropic
effects of statins. International Journal of Molecular Sciences 21(22):
8745. https://doi.org/10.3390/ijms21228745
Pak, V.V., Kim, S.H., Koo, M., Lee, N., Shakhidoyatov, K.M.
& Kwon, D.Y. 2007. Peptide design of a competitive inhibitor for HMG-CoA
reductase based on statin structure. Biopolymers 85(4): 392-406. https://doi.org/10.1002/bip.20580
Palupi, H.T., Estiasih, T. & Sutrisno, A. 2021. Characterization
of nutritional and functional properties of lima bean flour (Phaseolus
lunatus L.). IOP Conference Series: Earth and Environmental Science 924(1): 012033. https://doi.org/10.1088/1755-1315/924/1/012033
Rebollo-Hernanz, M., Bringe, N.A. & Gonzalez de Mejia, E.
2022. Selected soybean varieties regulate hepatic LDL-cholesterol homeostasis
depending on their glycinin: β-conglycinin ratio. Antioxidants 12(1): 20. https://doi.org/10.3390/antiox12010020
Recek, N., Holc, M., Vesel, A., Zaplotnik, R., Gselman, P.,
Mozetič, M. & Primc, G. 2021. Germination of Phaseolus vulgaris L. seeds after a short treatment with a powerful RF plasma. International
Journal of Molecular Sciences 22(13): 6672. https://doi.org/10.3390/ijms22136672
Rumiyati, R., James, A.P. & Jayasena, V. 2012. Effect of
germination on the nutritional and protein profile of Australian sweet lupin (Lupinus
angustifolius L.). Food and Nutrition Sciences 3(5): 621-626. https://doi.org/10.4236/fns.2012.35085
Sandoval-Sicairos, E.S., Domínguez-Rodríguez, M.,
Montoya-Rodríguez, A., Milán-Noris, A.K., Reyes-Moreno, C. &
Milán-Carrillo, J. 2020. Phytochemical compounds and antioxidant activity
modified by germination and hydrolysis in Mexican amaranth. Plant Foods for
Human Nutrition 75(2): 192-199. https://doi.org/10.1007/s11130-020-00798-z
Seidu, K.T., Osundahunsi, O.F. & Osamudiamen, P.M. 2018. Nutrients
assessment of some lima bean varieties grown in southwest Nigeria. International Food Research Journal 25(2): 848-853.
Soares, R.A.M., Mendonça, S., De Castro, L.Í.A., Menezes,
A.C.C.C.C. & Arêas, J.A.G. 2015. Major peptides from amaranth (Amaranthus
cruentus) protein inhibit HMG-CoA reductase activity. International
Journal of Molecular Sciences 16(2): 4150-4160. https://doi.org/10.3390/ijms16024150
Taylor, J.R., Novellie, L. & Liebenberg, N.V. 1985. Protein body degradation in the starchy endosperm of
germinating sorghum. Journal of Experimental Botany 36(8): 1287-1295. https://doi.org/10.1093/jxb/36.8.1287
Villalobos, M.C., Nicolas, M.G. & Trinidad, T.P. 2023. Cholesterol-lowering
effect of protein hydrolysates from lemongrass (Cymbopogon citratus Stapf.). Current Research in Nutrition and Food Science 11(3): 1177-1186. https://doi.org/10.12944/CRNFSJ.11.3.22
Wang, H. & Patterson, C. 2015. Atherosclerosis: Risks,
Mechanisms, and Therapies. New York: John Wiley & Sons.
Wang, J., Li, Y., Lo, S.W., Hillmer, S., Sun, S.S., Robinson,
D.G. & Jiang, L. 2007. Protein mobilization in germinating mung bean seeds involves
vacuolar sorting receptors and multivesicular bodies. Plant Physiology 143(4): 1628-1639. https://doi.org/10.1104/pp.107.096263
Zioudrou, C., Streaty, R.A. & Klee, W.A. 1979. Opioid
peptides derived from food proteins. The Exorphins. Journal of Biological
Chemistry 254(7): 2446-2449. https://doi.org/10.1016/s0021-9258(17)30243-0
*Pengarang untuk surat-menyurat; email: indrati@ugm.ac.id